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ABSTRACT
Tveltninary iniconetion and data are presented which show how the
rherme s clectriont, sind mechanical properties of epoxy potting compounds
vy Leocontvolled Byothe addition of discontinuous fibrous reinforoements
b il wedulos avamhite and/or boron nitride (BN). The addition of 16

'

savis oper huadred {(HehY of nominal 3 mil long graphite fibers of 83 x 106

Lo tus decreesed the Tinear thermal coefficient of expansion (o) of
areoeroxy by 70 (feam b3 x WO"L in/in/OC to 12.3 % 10-6 1n/in/OC).

For o the Bigh sodulas graphite fiber fiber modification compared to

antitied epoxy potting compound, modulus was increased by a factor oi
voximately 2.0 {0,406 x 106 pei to 1.28 x 106 psi) while strength was
oy omarginally increased (15,7 x 103 psi to 16.3 x 103 psi). BN fiber
additions, up to 14 pph, had little effect on modulus or strength; how-
ever, For the 14 oph addition o was reduced by approximately 40%.

fhe veduction of o« of an epoxy potting compound utilizing graphite

ki

arb oy BY fiberes is shown to be a function of modulus of fibers and

necative o of fibers along their length, as well as quantity of fibers

The addition o 14 pph boron nitride fibers only marginally reduced
cocistivity, .o, to 8.9 X 1013. Combinations of graphite and BN fibers
crovided evoxy potting compounds with properties intermediate compared to
cpnxy potting compounds with additions of graphite or BN fibers as sole

N
i fier.

Density for the highest loaded epoxy (16 pph) containing the densest
Tiber modifier (graphite) with P=2.0 g/cc) was only increased by approx-

of

imately 5.5% over the unfilled epoxy potting compound. A1l potting

‘ormutations were of pourable consistency indicating guod filling

characteristics.

111 ‘
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SECTION I
INTRODUCTION

The materials dovelopment program described herein was initiated as a
result of a request from the Space and Missiles Systems Organization
SAMSO) to act as consultant on a problem invoiving premature failire of
epoxy potted serisors during fabrication of a classified reentry vehicle,
In essence, approximate calculations indicated that during a bonding
operation at elevated temperatures, the already epoxy potted sensors were
exposed tc thermally induced compressive forces far in excess of their
rated capability. Possible solutions to the probiem were:

a. Utilization of o less pressure sensitive sensor;
b, Utilization of a low teuperature curing adhesive;
C. Redesign of the reent:y vehicle;

d. Utilization of a lower-modulus/thermal-coefficient-cf-
expansira (E o ) petting compound with similar handling
characteristics as the one initially selected;

e. Combirations of the above.
Item d is the subject of this report.

Epoxy potting compounds are widely used for a multituae of comnercial,
as well as aerospace applications. This report addresses potential prob-
lems associated with potting of delicate electrical, optical, and/or
mechanical sensors. Through experinent, it is shown how an epoxy polymer
may be modified with discontinicus high performance graphite and/or boron
nitride fibers to achieve heretofore unrealized potting compound properties.
Although the material developments discussed are orientet toward epoxy
potting compounds, other :lasses of polymers may be medified in Tike
manner to achieve similar improvements in mechanical properties or

alteration in physical characteristics.
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SECTION 11
MATERIALS

i Epoxy Potting Resin

A control epoxy potting compound was used throughout this program
to study the effect of various fillers of different amounts on mechanical,
physical, thermal, and electrical properties. The resin system (Reference 1)
was designated Epon 815%, a bisphenol-A epoxy which was modified with a
mono-epoxy diluent to reduce viscosity. The curing agent was diethylene-
trignine (DTA) added at 11 pph (Parts per hundred by weight). Properties

T

of the cured, unmodified resin are shown in Table 1.

2. raphite Fibers

iscontinuous graphite fibers for modification ¢ the epoxy potting
compound were obtained from the Thornel** Series of continuous yarns.
Properties are shown in Table I. A carbon yarn designated VYB 105-1/5
of lower modulus than the Thornel yarns was also used. The Thornel 75
yarn had a measured average modulus of 83 x 106 psi and 330 x 103
tensile strength. Of note is the reported increase in negative a up to

psi

the 50 x 106 psi modulus fiber, and then the decrease in negative a with
75 x 106 psi filanment (Reference 2). The slight difference in ¢ between
Thornel 50 and Thorrel 75 fibers is also shown to carry over to potting

compounds of the same quantity fibers as described in subsequent sections

of this report.

3. Boron Nitride (BN) Fibers

The BN fibers, supplied in mat form, were of an experimental lot
obtained ‘rom Carborundum Corporation., Figure 1 skuws the bulk mat in the
"as-received” condition and Figure 2 shows fibers from the mat at highe-
magnification. Uniike the carbon base fibers, the BN has dielectric

*Shell
**nion Carbide

.




viaracteristics which fmpart attributes as an insulator rather than o
conductor,

The reported coefficient of linear thevmal expansion (Raference ?)
wes determined Yrom X-ray anclysis of single crystals. The actual value
the dmparvfect mat fibers is prebably far less negative than indicated.
at O fiher developments indicate that wuch higher strengtn and
modulus are nossible than indicated in Table 1. As the modulus increases
and the fiber assumes a more ordered crystalline structure, o , in the

divection of the fiber would be expected Lo hecome more negative and
aporonch the theoretical value shown in Table 1.
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SECTION 1!1
ILCHANICAL AND PHYSICAL PROPERTY EVALUATIONS

Flexural Strength and Modulus

Flexural strength and modulus were obtained from the same specimens
that were used for thermal expansian measurements. The tests were con-
lucted using procedures of Federal Test Specification i " 406b as a guide.
The 3-point loading method was employed with 2 spon-to-depth ratio of
16 to 1. Specimens were tested at a crosshead rate cf 0.05 inche: per

1nute.

2. Density
Uonsity was determined by water ‘mipersion.
Resistivity

wesistivity measurements were made utilizing a Secxman Megohnmeter,
Model L-2 following the procaodires outlined in ASTM [-257-56. Samples

wore 2 ognches in ¢lameter and 1/8 inch thick.

d, Viscosity
Vicoisities were obtainod using a Brookfield Viscometer, Model

PVF, with a Nuwber 6 spindle at 2, 4, 10, and 20 RPM's. ASTM [-1324-
61T was used as a guide. The contain=r used fur the measurenicnts was

4 inches in deptn and 1.125 inches inside diameter. The potting com-
pound was filied to 0.25 inches from the top and the spindle centered in
the compour. Readings were takern at 72 T 2°F. A: per ASTM D-1824-617,
comzarison may be made to single reported values by using the viscosity

determined at a spindie RPM of 20,

B Fiber Lenath Determinations

Fiber lengths were measured from 250X photographs of aured potting
compounds. The average length of fibers, for all the potting compounds,
was approximately 0.003 inch as indicated from the sample determinations
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showp below:

a. Fiber Length of 5 PPH Thornel 75

A B C
Fiber Size (inches) <3.2x1073 3.2-6.0x16"3  s6.0x1073
Average Length of 1.65x107° 4.59x1073 8.29x10 .
iher in Lateqories |
Fiber ) f 69.5 19.5 11.0
nverage Lengtn 1n
ategories A, B, +
Avarage Fiber Length = 2.95x1073 inches
L. Fiber Lenath of 5 PPH Thornel 50
. . L -3 -3
Fiber Size (inches) ~3.2x10 3.2-6.0x10 >6.0x10
: Lar 200103 4 -3 -3
Average Lenyth of 1.72x10 4.49x10 9.03x10
Fibers in Categories
A, B, +C
of Fibers of 80 10 10

Average Length in
Categories A, B, +C

Average Fiber Length = 2.72x1073 inches

€. Coefficient of Linear Thermal Expansion

The test method and apparatus for determining the coeffizient of
lTinear thermal expansion of the materials in this investigation were
similar to thase described in ASTM D-696-70.




AL L TE - 51

Preoubeemen used was rectangular in cross section, having overall
2.0 inches x 0,375 inch % 0,250 inch. The coefficient of
Cuten fonine agiting cowpounds was determined from -3012°C to +30tz“C,

conducted for each value of « shown in Table II1,

i janeg af

Sorrtsiaum of 7 testn was
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SECTION IV
PREPARATION OF CURED POTTING COMPOUNDS

Several mixing methods were investigated. The results obtained for
a were not significantly changed regardless of the methods used.
Methods were tried using hand mix, blenders, and vacuums, and combinations
of 2ach. The most satisfactory method was as follows:

The apparatus used for mixing the reinforcement and resin was a two-
speed Waring blender with four cutting blades. The amount of resin (less
curing agent) used must be sufficient to cover the cutting blades which
in this case was 100 grams. After the resin is poured into the blender,
the prepared chopped fibers were added. The continuous yarns, as well as
BN fiber material were manually cut with a scissors to about one-half in-h
leng’ s and transferred to a container prior to loading the blender with
~esin. Best mixing was obtained by adding the chopped fibers in incre-
ments of 5 pph of resin.

The mixing time (10-25 sec) was generally controlled by the sound of
the blender. Initial mixing caused cavitation and some fiber filler was
deposited on the sides of the blender above the resin level. Mixing was
stopped and the fibers were scraped from the sides and deposited in the
resin. When the fibers are properly blended, the mixture no longer
cavitates and che blender has a smooth mixing sound. Fibers of higher
modulus appearad to require less mixing time,

During blending. the mixture increased in temperature due to heat
transfer from the mixture motor assembly. Before the curing agent was
add:d, it was important that the mixture be allowed to cool to room
temperature. While the mixture was cooling, it was placed in a vacuum to
remove entrapped air. After the mixture was cooled to room temperature
the curing agent was added.

A1l compounds were cured at room temperature for a minimum of 16 hours
prior to mechanical and physical testing.

Fo

el

i
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SECTION V
CALCULATIONS
15 Thermally Induced Compression Stresses (Approximate)
The stresses within the potting compound and, in turn, on potted
sensors were calculated for a 2-dimensionally restrained system, i.c.,
one face of potting comncund unrestrained, and for a 3-dimensionally ;
restrained system, i.e., the potting compound totally enclosed within a L

container. In both cuses the container was assumed to have negligible
expansion.

a. The 2-Dimensionally Restrained Potting Compound

To appruximate the stresses on an element in a potting
compound the following Hooke's law relationships were used

e, = %'°x - -E-(oy +0,) +aal (1)
e =-% o, - E’(O to ) + qaT (2)
. ¥ y X 'y
e, = %-oz --% (ox + °z) + aaT )
where ey ey. e, and Oy1 Oy» Oy represent the principal strains and

stresses, respectively. E and v are the modulus and Poisson's ratio of

the cured potting cumpound, respectively; o 1s the coefficient of

ﬁ linear thermal expansion; and AT 1is the change in temperature.
Assuming 2-dimensional restraint (Figure 3), z, being unrestricted,
we have
e, = ?y =0 (4)
20 b ; 4
_ ex 3 ngl.- E(cy +0) +aAT =0 (5)

RO S
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1
ey = E-oy - %-(ox + °z) + anT =0 (6}
o, =0 (7}

= -fv"‘HQAT
o, = 2 (9)
y vo
(‘E‘ *‘E‘)
Using the following potting compound (unfilled) property values, we obtain

C

£ = 0.46 x 10° psi

0.35

\Y

54.3 x 107% in/in/°c

a

For a 1°C rise in temperature (AT), the stress for the 2-dimensionally

restrained compound is 38.5 psi (compression) or o, = I = 38.5 psi

b. The 3-Dimensionally Restrained Potting Compound

If the z-plane restriction is considered, as shown in Figure 4,
then

e =e =e_ =0 (10)
and Ecuations 1 - 3 may be consolidated, so that

Fo- H2o) + asT = 0 (1)

aa
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’ Rearranging, we can write
T Y (12)

and by using the oroperties for the unfilled epoxy potting compound listed
in Table I above, a 1°C rise in temperature induces a compressive pressure
of 82.3 psi or

oy = o LGRS 82.3 psi
(NOTE: No attempt was made to provide a rigorous analytical solution for
the particular configuration investigated.) The subject potting container
was of 6-4 titanium alloy (E = 16 x 106 psi, a = 9.5 x 10'6 in/in/°C), and
it was assumed rigid, thus of no influence on the expansional character-

istics of the potting compound. Ir fact, the expansional characteristics
of the container would have a tendency to reduce compression stresses
generated within the potting compound. The higher the a of the container,
the lower the compression stresses.

2, Flexural Modulus and Strength

J Potting compound flexural strength was determined from

s . §§£2
2WD
where
d o = flexural strength (pounds/inchesz)
S = span (inches)
P = load {pounds)
W = width (inches)
D = depth (inches)
Modulus was calculated from - E§3
anp®

where the symbols are as defined for the preceding flexural strength
equation.

10
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8. Factor Increase in Weight of Various Powder Fillers Over Weignt of
N ~&
Thornel 50 Fibers to Obtain a of 13.4X1u"" In/In/°C

The results shown in (olumn A ¢f Table IV were obtained by dividing
the percent total weight of filler (extrapolation cf curves of Figure 6)
by the total weight percent (11.2%, 14 pph) Thornel 50 to obtain a value
of 13.4%10°% insinsec.

4, Factor Increase in Density of Various Potting Compounds Over Density
of Thornel 50 Potting Compound tc Obtain a of 13.4X10™° In/In/°C

The resulits shown in Column B of Table IV were obtained by cal-
culating the densities of the various modified potting compounds and
then dividing each calculated density by the measured density of the
11.2% by weight Thornel 5G fiber filled potting compound. The Rule-of-
Mixtures was used to calculate densities; for example

We+t o W

aC i ror

where
e = density of potting compound
CPE density of fiber
°p = density of resin
Nf = percent by weight fiber

X
n

percent by weight resin
(including curing agent)

"
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SECTION VI
DISCUSSION

Fillers are used extensively to modify epoxies to obtain cdesired
end-properties. Modification of potting compounds to reduce a and
potential thermally induced stresses on delicate embedde. components. o
has been accomplished by compcunding the resin cystem with fillers such
as aluminum oxide, aluminum powders, mica, talc, silica, lithium
alumiaum silicate, calcium carbonate, and others. Figure 5 shows the
reduction of a versus amount of a particular filler. It s apparent
that, to obtain significant reductions in a , filler in vary large
quantities is required. Figure 6 consists of another series cf curves
obtained from a different so:.rce (Reference 1) which show that the
compound must be heavily filled to obtain appreciable decreases in a.
Because of this fact, the improvement (reduction) in a is countered by
undesirable changes in properties such as increased viscosity, density,
and modulus. The latter influences the degree of therwally induced

stresses.

The maximum amount of fibers compounded was limited to 16 pph
(12.6% by weight of total) to meintain a pourable consistency. Tabie I
shows viscosities in centipoises for the uncured potting compounds. The
E value at a spindie RPM of 20 is customarily reported. For the potting
compound application which led to this study, 20,000 centipoises was a

requirement, althuugh a higher value (other requirements being satisfied)
3 could be tolerated.

i Figure 7 shows a versus quantity of fibers for the systems invest-

| igated. Increasing amounts (to 14 pph) of negative a BN fibers indicates
f a decreasing a of the potting compound. The same is true for the

Thornel fiber modifications, where the greater negative a fibers impart
the lowest o« potting compounds. The a's of the Thornel 50 and Thornel
75 fibers (Table I) are numerically very close. This similarity is also
reflected in potting compounds containing the different fibers, but
comparable weight fractions. Only one series of thermal expansion
measurements was conducted for the low modulus (6 x 106 psi) carbon

ol , 12
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fiber modified epoxy potting and is shown in Figure 7 by the solid
triangle.

The effect on potting compound a, using combinations of Thornel 75
fibers and BN fibers, is shown in Figure 8. [t appears that a linear
relationship exists between the 1imits of O and 14 pph fibers and that
mixtures of these fibers within those limits will provide intermediate

a's,

Calculations were made (Section V) to approximate the thermally
induced compression stresses generated on an encapsulated component for
a 1°C rise in temperature. Results are depicted in Tabie III for the
various fiber-modified potting compounds. These same results were used
to plot the compression stresses versus temperature rise from room
temperature (22°C) curves (Figures 9-13) for the different systems
investigated. Both 2~ and 3-Dimensionally restrained compounds are
shown. The figures graphically illustrate the importance of temperature
control and design of the potting container (restraint effects) to
maintain stresses at the lowest possible level.

As indicated by the curves, one approach to reduce stresses would be
to provide a design that does not warrant intimate contact of the potting
compound with all sides of the container. As shown in the curves, the

! ¢-dimensionally restrained compound allows stress relief, whereas the

[ 3-dimensionally restrained system does not. When permissible, stresses
may be further reduced by closely matching the a of the potting compound
to that of the container.

The magnitude of stresses is not solely attributed to a, but is
actually the product of modulus and « or Ea. This is clearly indicated
when we compare (Table III) the stresses per centigrade degree rise
in temperature for the 5 pph Thornel 75 compound to the 16 pph Thornel
75 compound. Even though the 16 pph compound is one half the a of the
5 pph compound, the significantly higher modulus of the 75 pph modifi-
cation, due to higher value fraction fibers, results in higher stresses.

i

e

13
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Alternately, The Ea influence on thermally induced stresses are
shown when we compare potting compounds of equivalent weight fractions
fiber reinforcement, but different mydulus fiber. For instance, 16 pph
of the lTower modulus Thornel 50 results in lower thermal stresses than
the epoxy formulated with 16 pph of the higher modulus Thornel 75
(recall that a of the Thornel 50 fiber is approximately the same as «a
of the Thornel 75 fiber).

It is cautioned, that the calculated compression stresses for both
a 3-dimensionally restrained (totally enclosed) and 2-dimensionally
restrained (no restriction on one face) potting compounds are only
approximate, because we assumed that the containcr material was completely
rigid and nonerpanding. Depending on the oE, the geometry, and thick-
ness of the container material, stresses may be further reduced. However,
the results on a qualitative basis, are quite informative for rating
potting compounds and indicating tne potential severity of thermally
induced stresses on sensitive potted elements.

The slight discrepancies in modulus values at the highest fiber
Toadings (14 and 16 pph) are attributed to 2xperimental errur in
preparing the compounds of slight volume fraction difference. Typically,
the modulus would be expected to increase for the higher fiber loading.
Another possible source of error is that th2 specimens did not ali hzve
the same lergth of cure. This would also affect the modulus of the
potting compounds.

Referring to Table III, it is seen that a wide rarge of a's are
possible, and depending on requirements, resistivity may also be con-
trolled. Because of the dielectric properties, BN fiber potting
compound modifications offer not only reduction of « and thermal
compression stresses, but also good dielectric characteristics such as
indicated by the negligible loss of resistivity for the 14 pph addition.
Although the hexagonal crystal structure of BN (Reference 3) is a close
analog of the graphite structure, and many properties are similar
(theoretical mechanical properties, high temperature resistance, and

14

!
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lubricating qualities), othe.: properties are radically different. For
instance, BN is white and has excepticnally good jnsulating properties
while graphite is black and behaves as a conductor. At room temperature
the specific resistai.e of BN has been reported in excess of 10]2 ohms.
Anticipated deveiopments in BN fiber technology will provide fibers with
higher strength, modulus, and lower thermal coefficient of expansion
without affecting its excellent dielectric properties. Thus, for an
application requiring high insulating qualities, as might be expected in
potting unprutected electrical components, a BN fiber formulation may be
in order,

As mentioned earlier, another advantage of compounding with taese
discontinuous high performance fibers is that the weight per unit volume
is changed littie over the control unmodified potting compound because
(a) such a small quantity of fibers is necessary to achieve desired
propertics, and (b) the fibers are themselves of low density. Tabie ™
lists typical fillers which have been used to modify potting compounds
and notes those that are capable of providing a's as low as that obtained
(13.4 x 10"6 in/in/°C) for the 11.2% by weight Thornel 50 fiber modifi-
cation. The toial weight percent modifier indicated to reduce o was
determined by extrapolating the curves of Figure 6 to 13.4 x 10" insin/ec.
The differences between the a and density of the Epon 828 system
(Figure 6) and the control Epon 815 system used in this study were
considered neglibible. It is assumed that the high weight percent
£illers shown in Figure 6 would be difficult to compound and be of
extremely high viscosity.

The A* column of Table IV indicates, for the fillers listed, that to
achieve an o of 13.4 x 10"6 in/in/°C, at least seven times as much filler
as the Thornel 50 addition would be required. Further, on a weight-per-
unit-volume basis we see from Column g*, Table IV, that the additional
quantity of filler required with the corresponding higher density than
graphite (or BN) would yield compounds significantly denser than the
graphite fiber filler modification.

15
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The graphite fibers, aithough well established as high performance
fibrous reinforcements, have yet to develop a sizable market to reduce
current prices of about$50 per pound and up, depending on modulus of yarn
and construction. It is anticipated that further developments in pre-
cursor technology and production processes could reduce the cost to
$5-10 per pound for continuous fibers. It may be possibl2 to produce
or obtain short fibers of the type necessary to obtain low a potting

compounds for less cost.

The BN fibers have not been developed to the degree that graphite
fibers have, i.e., controliabie modulus in excess of 80 x 106 psi.
Future advancements in this area promise to provide fibers with signifi-
cantly higher modulus and strength properties and correspondingly more
negative values of a than the fibers used in this preliminary study.
Projected economics indicate that it is feasible to produce continuous

BN fibers of high modulus and strength for less than $5 per pound.

The current prices of graphite and BN fibers are not competitive with
the fillers listed in Table IV, which sell for about 8-12 cents ver pound
in large lots. However, in some instances, due to the quantity of filler
required, it may be impractical to utilize the low cost fillers because
of processing restraints. Then too, the large filler addition (depending
on type used) would increase modulus of potting compound, lessening, in
turn, resistance to thermally induced stresses. Use of graphite aad/or
BN fibers as fillers certainly should be considered when combinations
of attributes such as low density, viscosity, modulus, low quantity of
fibers, control of thermal stresses, control of resistivity, and facile
processing are desirable. Close scrutiny must be given to the seemingly
obvious advantage of low ccst of other fillers as compared to the
resulting system oerformance.

Critical applications, aerospace or other, where reliability,

survivability, and low maintainability are of paramount concern, dictate
consideration of graphite and or BN fiber filler potting compounds.

16
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SECTION VII

il

CONCLUSIONS

Preliminary experimerits and tests have shown that it is feasible to
incorporate small quantities (16 pph or less) of short fiters of graphite
and/or boron nitride in an epoxy polymer to0:

a. Reduce a significantly from 54,3 x 10'6 in/in/°C for the cured
urmodified epoxy to 12.3 x 10'6 in/in/°C for a 16 pph Thornel 75 form-
ulated compound.

b. Considerably reduce thermally induced compression stresses on
potted sensors or elements.

¢. Control a over a wide range while maintaining low cured potting
compound density, as well as pourable viscosity.

d. Maintain high levels of potting compound resistivity by
utilization of BN fibers as sole modifier.

e. Adjust mechanical, physical, and thermal properties of potting
compounds by using mixtures of graphite and BN fibers.
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Figure 1. As-Received Boron Nitride Fiber Mat

Figure 2. Hicher Magnification of Boron Nitride Fibers from Mat
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t Figure 3. 2-Dimensionally Restrained Potting Compound
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Figure 4. 3-Dimensionally Restrained Potting Compound
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Figure 9. Thermally Induced Compression Stresses - Thornel 25 Fiber
Filled/Epon 815, DTA-2-D and 3-D Restraints
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